1557. Minimum Number of Vertices to Reach All Nodes
https://leetcode.com/problems/min-cost-to-connect-all-points/
Python
Kruskal's Algorithm
- Time: O(N^2 * logN)
- Space: O(N^2)
class UnionFind:
def __init__(self, size: int) -> None:
self.group = [0] * size
self.rank = [0] * size
for i in range(size):
self.group[i] = i
def find(self, node: int) -> int:
if self.group[node] != node:
self.group[node] = self.find(self.group[node])
return self.group[node]
def join(self, node1: int, node2: int) -> bool:
group1 = self.find(node1)
group2 = self.find(node2)
# node1 and node2 already belong to same group.
if group1 == group2:
return False
if self.rank[group1] > self.rank[group2]:
self.group[group2] = group1
elif self.rank[group1] < self.rank[group2]:
self.group[group1] = group2
else:
self.group[group1] = group2
self.rank[group2] += 1
return True
class Solution:
def minCostConnectPoints(self, points: List[List[int]]) -> int:
n = len(points)
edges = []
for i in range(n):
for j in range(i+1, n):
weight = abs(points[i][0]-points[j][0]) + abs(points[i][1]-points[j][1])
edges.append((weight, i, j))
edges.sort(key=lambda edge: edge[0])
uf = UnionFind(n)
cost = 0
edges_used = 0
for weight, i, j in edges:
if uf.join(i, j):
cost += weight
edges_used += 1
if edges_used == n-1:
break
return cost